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Human untargeted metabolomics studies annotate only ~10% 
of molecular features. We introduce reference-data-driven 
analysis to match metabolomics tandem mass spectrometry 
(MS/MS) data against metadata-annotated source data as a 
pseudo-MS/MS reference library. Applying this approach to 
food source data, we show that it increases MS/MS spectral 
usage 5.1-fold over conventional structural MS/MS library 
matches and allows empirical assessment of dietary patterns 
from untargeted data.

Complex sequence data from metagenomic (see Box 1 for 
definition of terms) or metatranscriptomic experiments require 
for interpretation both databases of curated genes and reference 
data, such as whole genomes or other sequence data with carefully 
curated metadata (developmental stage, tissue location, pheno-
type, etc.)1–4. Such reference data-driven (RDD) analysis increases 
understanding of complex communities by using matches between 
genes or transcripts of known and unknown origin. The RDD 
strategy is essential for the successful analysis of most metatran-
scriptomics or metagenomics data. By analogy, interpreting liquid 
chromatography–tandem mass spectromtery (LC–MS/MS)-based 
untargeted metabolomics data is performed by searching struc-
tural MS/MS libraries. However, leveraging reference data with 
curated and structured controlled vocabulary metadata to improve 

insights obtainable from untargeted MS/MS-based metabolomics is  
not yet done.

RDD analysis uses not only annotated MS/MS-spectra but also 
all unannotated spectra. The gas chromatography–mass spectrom-
etry (GC–MS) BinBase resource has made a step in the direction 
of RDD. With BinBase one can annotate if a spectrum match has 
been observed in a non-public GC–MS dataset. However, the meta-
data is not well controlled and lacks the ability to add contextualized 
metadata5,6. In addition, as we have previously demonstrated, using 
structural annotations, the source can be determined by literature 
mining7. However, owing to the above mentioned limitations and/
or inability to link related spectra in the case of metabolism, the 
above strategies to annotate unknowns cannot be used to system-
atically to interpret the source information at the dataset level. We 
therefore introduce the RDD approach for metabolomics (Fig. 1), 
followed by a use case demonstrating empirical food readouts from 
untargeted human data (Fig. 2).

Untargeted MS/MS-based metabolomics experiments involve 
searching MS/MS structural libraries since the late 1970’s8,9, or, more 
recently, for investigating the distribution of a MS/MS spectrum 
across public untargeted data10. Instead of only leveraging a single 
MS/MS spectrum to obtain an annotation, RDD metabolomics uses 
all MS/MS spectra from untargeted metabolomics files, which con-
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tain hundreds to thousands of MS/MS spectra, for metadata-based 
source annotation. The key differences are that the output reports 
contextualized information from source reference datasets. For 
successful RDD analysis, it is critical that the contextualized data 
are curated using controlled vocabularies or the results will not be 
amenable to downstream analysis. In the presented application for 
RDD, we investigated which food compositions could be recovered 
from data acquired from human biospecimens. Answering this 

question required a resource of reference food MS/MS source data 
and associated curated metadata. The source data includes MS/
MS spectra of multiple ion forms of known and unknown mol-
ecules, isotopes, adducts, in-source fragments, and multimers11,12. 
The curated reference dataset can be matched in human biospeci-
mens via direct matching of the MS/MS spectra or by molecular 
networking. Unlike static libraries, RDD analysis retains flexibility 
by enabling custom addition of files or metadata, and also gives 
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Fig. 1 | The concept of an RDD-based analysis workflow. a, Perform spectral alignment of the MS/MS-based untargeted metabolomics data from human 
biospecimens with data from reference samples that have controlled vocabularies for metadata. This can, optionally, be combined with MS/MS libraries. 
b, Link the spectral matches to the source information from the metadata from the reference samples. Create a data table of source ontology, human 
biospecimen and counts to enable data science and interpretation.
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the user control on how the reference data is processed. We cre-
ated a step-by-step tutorial for RDD analysis using Global Natural 
Products Social Molecular Networking (GNPS) (https://ccms-ucsd.
github.io/GNPSDocumentation/tutorials/rdd/ and corresponding 
video tutorial https://www.youtube.com/watch?v=2-XsifrUY0Y)13.

To exemplify RDD metabolomics, and because food is criti-
cal for health, we created a food metabolomics reference dataset. 
There is an unmet need to retrospectively and empirically read out 
food and beverage information from human metabolomics data, 
complementing current state-of-the-art mass spectrometry nutri-
tion readout approaches targeting up to ~150–200 metabolites, 
food frequency and abundance questionnaires, diet records, 24-hr 
recalls, which can be self-monitored or assisted by a nutritional 
specialist14,15. The food reference dataset consists of untargeted 
metabolomics and detailed and structured metadata for ~3,500 
foods (157 different food-specific metadata fields, Supplementary 
Table 1). It contains 107,968 unique MS/MS spectra merged from 
1,907,765 spectra. The food source data can be easily expanded by 
creating and depositing additional datasets and metadata in GNPS/
MassIVE.

For RDD, food source data is subjected to GNPS-based molecu-
lar networking16,17 together with human metabolomics datasets (Fig. 
2a). Using information on the controlled research diets of partici-
pants of a sleep and circadian study we assessed if RDD recovers 
food known to be consumed18. In this study, the participants were 
housed for four days, twice and were given a controlled diet, there-
fore we know if the results agreed with the known diet from that 
study (Fig. 2b). Of the 15 food categories, eleven represented direct 
matches to foods provided to the participants. Of those eleven 
matches, three matched to fermented versions of the non-fermented 
foods consumed such as fermented grapes instead of grapes, apple 
cider instead of apple, yogurt instead of milk, and four categories 
were not documented as consumed during the study, three of which 
could be explained. Evidence of caffeinated beverage consumption 
was observed only in two individuals—in the first 48 h in one vol-
unteer and once in a second volunteer in the middle of the study—
that there were few matches to caffeinated beverages is consistent 
with the elimination of caffeinated beverages in the controlled diet. 
Although not always written on the ingredient list of packages, rose-
mary is a common ingredient added to ground meat to slow oxida-
tion and spoilage. The source of the matches to soda are unknown. 
This demonstrates that RDD can successfully obtain the correct diet 
information from untargeted metabolomics data but also be used to 
monitor diet adherence in controlled-diet studies.

We also tested mismatched food inventories by cross-matching 
US or Italian foods (different diets) and clinical cohorts. Crossover 
revealed that MS/MS spectral usage rates—the percentage of MS/
MS spectra interpreted by the analysis—were 5–6% in reciprocal 
tests, versus 15–30% when the correct regional foods were used 
(Fig. 2c; P = 0.019). These observations show that RDD analysis is 
selective on the basis of the foods that are consumed but also that 

it is important to continue to grow the food reference database as 
generic food databases have considerable value. Efforts, such as the 
Periodic Table of Food Initiative, and linking of Metabolights and 
Metabolomics workbench repositories with GNPS/MassIVE will 
aid the expansion of the food reference data.

We next assessed if RDD analysis could recover a reference food 
spiked into human biospecimen extracts. We therefore analyzed mix-
tures of two human fecal samples or the NIST 1950 plasma reference 
extract with a tomato seedling extract in different proportions19,20. In 
all three biospecimens, the proportion of spectral matches relative 
to the tomato seedling extract increased linearly with the spiked-in 
proportion (P = 2.32 × 10−31; Supplementary Fig. 1).

Because RDD analysis can be performed retrospectively, we 
co-analyzed the food reference dataset with 28 additional public 
human datasets (Supplementary Table 2, Supplementary Fig. 2). 
Of the MS/MS spectra, 10.1 ± 4.4% matched to spectral structural 
libraries. RDD increased MS/MS spectral usage 5.1 ± 3.3-fold over 
structural MS/MS library matches. With molecular networking, 
which can capture metabolized versions of molecules, spectral 
data usage increased 6.8 ± 3.5-fold. Inclusion of connected nodes, 
representing potential metabolism via molecular transformations, 
resulted in a total increase of 43.7 ± 3.1% (fecal; P = 6.9 × 10−10), 
51.2 ± 6.9% (plasma; P = 2.8 × 10−6), and 58.0 ± 4.2% (other; 
P = 1.4 × 10−6) of MS/MS spectra that can be leveraged as empirical 
readout of diet (Supplementary Fig. 2).

To validate the food consumption readouts obtained via RDD 
analysis from these 28 datasets, direct spectral library matches in the 
molecular networks created by the food-based RDD analyses (1% 
false discovery rate (FDR), and level 2/3 according to the metabo-
lomics standards initiative21,22) were evaluated to verify whether 
they make sense in the context of food. An InChIKey is available 
for 4,586 of 5,455 spectral matches against the reference libraries, 
which yielded 1,492 unique structures upon consideration of planar 
structures. For 415 out of 1,492 planar structures that had lifestyle 
tags associated in GNPS7,10, ‘food consumption’ was the most fre-
quently reported tag (357 entries, 86%). Additionally, other matches 
are related to the food production chain, such as feed additives to 
promote animal growth that are tagged as ‘drug’, which include the 
antimicrobial agents monensin, enilconazole, kanamycin and other 
agricultural additives or environmental toxins (e.g. domoic acid)23.

To assess if RDD can reveal dietary preferences, we analyzed 
a dataset of omnivores and vegans. Principal component analysis 
(PCA) of the spectral match relative proportions to reference foods 
revealed distinct patterns between dietary preferences (Fig. 2d). 
Omnivores had more MS/MS matches to dairy, meat, and seafood 
(P = 0.0021, 2.2 × 10−10, and 7.7 × 10−7, respectively), while vegans 
had more MS/MS matches to legumes, fleshy fruit, and vegetables 
(P = 2.2 × 10−10, 0.0096, and 0.029, respectively; Fig. 2e). Because 
many MS/MS spectra from foods may overlap, using only MS/
MS spectra unique to each food can provide additional specific-
ity (Fig. 2f). RDD analysis on an elderly population24 found that 

Fig. 2 | RDD with food reference data. a, Food RDD analysis schema. (int. = intensity) b, Food spectral counts (1% FDR21) observed in plasma from 
a sleep restriction and circadian misalignment study that controlled the diet of the participants (n!=!371 samples from 20 healthy adults)18. The size 
of node represents the relative number of spectral matches at each food level. Blue arrows indicate foods that could be explained although they were 
not provided in the study; orange arrow indicate source is not known. c, A crossover experiment between centenarian data from Italy and a sleep and 
circadian study from the US, for both fecal and plasma samples. Study-region-specific foods consumed by those individuals (yes) versus a different set 
of study-region-specific foods (no). One-way Welch’s t-test, thick line is the mean, range within the box is the interquartile range (IQR) from the 25th 
to 75th quartile, whiskers indicate the minimum and maximum. d, PCA of food counts color coded by vegan (brown) versus omnivore data (green). e, 
Statistical analysis for the food counts at level 3 of the ontology, in relation to omnivore and vegan data (left six panels, dairy, meat, seafood, legume, 
fleshy fruit, vegetable, Wilcoxon test, n!=!36, 19 are vegan and 19 are omnivore). f, As in e but level 4 ontology using unique spectral counts (spectral usage 
is the percentage of MS/MS spectra used in the analysis. As they are unnamed ontologies as one would find in microorganism phylogeny in microbiome 
science (for example kingdom, genus, species) we have denoted these as layers (Right six panels, cow, pig, fish-saltwater, shellfish, citrus, vegetable, 
Supplementary Table 1). e,f, Boxes represent the IQR; the lower limit is the 25th percentile, the center line is the median, the upper limit is the 75th 
percentile; bars show the 75th percentile!+!1.5!×!IQR and the 25th percentile!−!1.5!×!IQR.
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individuals with lower diet diversity had more spectral matches 
to dairy, soda, and coffee, and this diet type was more prevalent in 
the group with Alzheimer’s disease than those with normal cogni-
tion (Supplementary Fig. 3). This demonstrates that RDD analysis 
can be used to retrospectively stratify clinical studies onthe basis of 
empirical readout of diet composition for each sample.

RDD thus enables readout of dietary patterns (for example, 
vegan versus omnivore) and consumption of specific food items, 
and, more generally, can be used to match against any curated 
and ontology-aware reference database of sources, including envi-
ronmental, or microbial sources. RDD metabolomics is currently 
unique to GNPS, as it requires highly scalable molecular network-
ing and incorporation of detailed metadata. However, as other anal-
ysis ecosystems add molecular networking capabilities, or that make 
RDD compatible with other spectral alignment algorithms, it will 
become possible to use other resources for RDD metabolomics. As 
scalable molecular networking for GC–MS is also possible25, spe-
cialized resources, such as BinBase5,6, may eventually be leveraged 
for RDD analysis of specific applications or questions. To expand 
the scope of RDD metabolomics beyond food readout, well curated 
datasets of personal care products, medications (not just active 
ingredients but also formulations), microbial isolates, country of 
origin, biological sex, age, etc. might also be used as source refer-
ence data and requires careful curation with controlled vocabularies 
and structuring of metadata. Potential applications of RDD metabo-
lomics include understanding diet and nutritional intake, exposure 
risks, medication use, consumption of illegal substances, environ-
mental allergens, pollution studies, microbiome investigations, food 
ingredients/adulteration, forensics, and personal care product trac-
ing to inform of potential exposures and health implications.
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Methods
IRB information for the human datasets used in this study and GNPS/
MassIVE ID. Sleep study (MSV000083759; IRB 15-0282), centenarian 
(MSV000084591; IRB 180478), impact of diet on rheumatoid arthritis 
(MSV000084556; IRB 161474), late preterm (LP) infant (MSV000083462; 
MSV000083463; IRB 151713, UCSD), children with medical complexity 
(MSV000084610; IRB 161948, UCSD), American gut (MSV000081981; 
IRB 141853, UCSD), fermented food consumption (MSV000081171; 
IRB 141853, UCSD), Malawi legume supplement (MSV000081486; IRB 
201503171, Washington University Human Studies Committee), Rotarix 
vaccine response (MSV000084218; IRB PR-10060, University of Virginia), 
IBD_1 (MSV000082431; IRB 150675), IBD_individual (MSV000079115; IRB 
150675), IBD_seed (MSV000082221; UCSD HRRP 131487), IBD_biobank 
(MSV000079777; UCSD HRRP 131487); IBD_2 (MSV000084775; IRB 150675), 
IBD_200 (MSV000084908; IRB 150675), Alzheimer’s disease (MSV000085256; 
UCSD IRB 170957), COVID-19 (MSV000085505; MSV000085537; IRB 
30248420.9.0000.5440, University of São Paulo, Brazil), IBD_biopsy 
(MSV000082220; IRB 120025), gout (MSV000084908; IRB 160768X), adult 
saliva (MSV000083049; IRB 150275, UCSD), legume supplementation 
(MSV000084663; IRB 201905103), NIST omnivore and vegan reference data 
(MSV000086989; de-identi"ed NIST IRB MML-2019-035).

Global FoodOmics reference data. For the exemplary dataset used to highlight 
RDD metabolomics analysis we created and leveraged the ‘Global FoodOmics’ 
project (http://www.globalfoodomics.org) reference dataset. This dataset now 
contains 3,579 food and beverage samples contributed by the community, 
following in the footsteps of the American Gut and the Earth Microbiome 
Projects26,27. The majority of samples were photographed, and a subset were 
subjected to 16S ribosomal RNA profiling (1,511 samples) to characterize the 
microbial composition, as well as providing information about mitochondria 
and chloroplast sequences matched by the same primers. Raw and processed 16S 
ribosomal RNA amplicon sequencing data is available at Qiita study 11442 and 
raw sequence data has been deposited at EBI accession ERP122648. Foods from 
our Global FoodOmics project were curated according to the Earth Microbiome 
Project Ontology, the USDA Food Composition Database, a modification to the 
Food and Nutrient Database for Dietary Studies28,29 (https://ndb.nal.usda.gov/) and 
also included a six-level food ontology, as well as information for fermentation or 
organic status, land or aquatic origin, country of origin, etc.

Sample collection. Sampling methodology was developed to facilitate sample 
collection in any environment, from the home, a restaurant, a festival, or in the 
lab. Initial samples were collected between April 2017 and March 2018. Additional 
sets of samples were added through fall 2019. Each sample was assigned a unique 
number identifier upon sampling, which was used to trace the origin of the sample, 
and to organize descriptive information about the sample. In addition, when 
possible, samples were photographed by the participant to create a photographic 
archive of all samples (uploaded to MassIVE MSV000084900; >4,000 images 
representing 67% of the samples (2,399/3,579)). Primarily for the initial dataset, 
these images were used as the first point of reference for the collection of ancillary 
information about the different samples (termed metadata, described in more 
detail below). The image archive was critical to allow retroactive metadata 
curation. As the project evolved and the breadth of sample types increased, new 
categories were added to the metadata, which were then filled in weeks or even 
months after sample collection.

Samples were frozen at −80 °C within 24 h of sample collection, unless 
otherwise noted in the metadata. Two samples were collected for each food or 
beverage included in the study. One sample was collected as an archive and directly 
frozen, and a second sample was collected for extraction. Food samples were 
collected in a tube prefilled with 1 ml 95% ethanol (Ethyl alcohol (Sigma-Aldrich) 
and Invitrogen UltraPure Distilled Water), as high ethanol concentrations are 
efficacious at preserving the sample for both DNA and metabolite analyses30. 
Samples were collected into 2-ml round bottom microcentrifuge tubes (Qiagen) 
and weighed before freezing. The pre-sample and post-sample weights as well 
as the weight differences were recorded in the metadata. It was not possible to 
collect all samples at a given concentration of extraction solvent (ethanol), because 
sampling was performed in many different environments and is meant to be 
consistent with future crowd-based community science participation. Therefore 
the data can be compared qualitatively and not quantitatively, however for certain 
subsets 50 mg material were collected.

Additional sets of food samples were added to the core set using the same 
methods as outlined above when possible. Samples from Venezuela were collected 
whole in absolute ethanol ≥ 99.8% (Sigma-Aldrich) and the extract was processed 
directly.

The experimental protocol for the sleep restriction and circadian misalignment 
study has been described previously31. Meals and food samples were prepared by 
the Clinical and Translational Research Center Nutrition Core of the Colorado 
Clinical and Translational Sciences Institute. Food was transported to the research 
site and refrigerated for the duration of the in-patient study. Individual meals 
were sampled and stored frozen in ziptop bags. They were stored at −70 °C before 

subsampling and LC–MS/MS analysis. Images are contained in a separate Sleep 
Study folder (MSV000084900).

For several of the human studies we collected data on associated foods 
(study- and region-specific foods terms (SSF)), which were processed according 
to the same methods as the Global FoodOmics samples. The number of SSF 
samples per cohort are outlined here: experimental sleep restriction and circadian 
misalignment (197 samples; 45 are pooled); centenarian (38 individual samples); 
Malawi legume supplement (14; 2 sample types, several extraction types); children 
with medical complexity (24 formula samples; 11 exact overlap); rheumatoid 
arthritis diet samples (20 individual sample; 2 samples types (stool, plasma), 3 time 
points)); mother’s milk (58 milk samples); legume supplements (15 individual 
legume samples; 6 different types).

Community-based science collection. During the course of sampling, samples 
were received from over 50 different individuals in California as well as from 
different states as well as countries (such as Malawi, Venezuela, Italy, and Brazil). 
Contributions from individuals ranged from produce from home gardens, home 
fermented products (yogurt, kombucha, sauerkraut), meat and dairy from private 
farms, to items individuals had purchased that were of interest to them.

We were also directly invited to sample at local stores and organizations, 
including Venissimo cheese, Good Neighbor Gardens, and the San Diego Zoo 
and San Diego Zoo Safari Park, as well as local supermarkets such as Sprouts 
Farmers Market, Whole Foods Market, and Ralphs. We were invited by San Diego 
Fermenter’s Club founder Austin Durant to the San Diego Fermenter’s Club 
meeting and sampled from multiple vendors at both the Oregon Fermentation 
Festival in 2017 as well as the San Diego Fermentation Festival in 2018. We also 
received citrus samples from a farm at the US–Mexico border, with visibly dark 
skin owing to air pollution, a particular concern for the farmer. Other sampling 
occurred in conjunction with study design, as was the case for the rheumatoid 
arthritis cohort and the COVID-19 study. In total, we engaged with a broad range 
of individuals, organizations, businesses, and scientists, to generate this dataset of 
3,579 samples, which continues to be expanded. A predominance of foods included 
in this initial dataset were sampled and/or purchased in California, leaving room 
for much further expansion and the inclusion of a crowd-sourced community 
science initiative to expand the array of samples.

The sample set contains a broad set of simple foods including fruits, vegetables, 
grains/legumes, as well as raw meat and fish, which build the foundation of 
many food products. In addition, we have 1,133 fermented samples. This 
subcategorization of foods is made possible by the metadata collected on these 
samples, described below. The breadth of samples included in the dataset 
necessitated careful collation and a range of information about the samples, 
resulting in 157 different metadata categories to describe various aspects of these 
food and beverage samples (Supplementary Table 1).

The foods, although primarily consumed in the US, could be traced to 
originate from over 50 different countries or territories of origin reflecting the 
global distribution of food (Argentina, Australia, Austria, Belgium, Bolivia, Brazil, 
Canada, Chile, China, Colombia, Croatia, Ecuador, England, Ethiopia, France, 
Germany, Greece, Guatemala, Haiti, Holland/Netherlands, India, Indonesia, 
Ireland, Israel, Italy/Sardinia, Japan, Kenya, Korea, Madagascar, Malawi, Mexico, 
New Zealand, Nilgiri, Peru, Philippines, Poland, Serbia, Portugal, Russia, Scotland, 
South Africa, Spain, Switzerland, Taiwan, Thailand, Trinidad & Tobago, Turkey, 
UK, USA/Puerto Rico, Vietnam, and Venezuela; some are labeled by continent 
such as US, EU, or South America).

Metadata curation. Detailed information about each sample was captured in 
the form of metadata. There are 157 metadata fields available for each food. The 
metadata are in the form of an array, where each row represents one sample and 
each column captures unique information about the sample (See Supplementary 
Information for Metadata File, as well as metadata on Massive MSV000084900). 
This matrix allows for the categorization of foods by various different attributes 
and links these attributes to the sample numbers, the data files (.mzXML filename), 
as well as the 16S sequence information on Qiita (sample_name). The initial 
metadata categories captured included sample description, sample number, 
location the sample was collected, weight of the sample (pre-sample, post-sample, 
sample weight), day the sample was collected, and whether an image had been 
taken and renamed to match the sample number and archived in the image 
repository. The initial nine categories captured minimal information and allowed 
tracking of information about the sample.

During the process of sample collection, the diversity of the samples being 
collected necessitated the addition of columns to capture more information about 
the samples and to be able to categorize them and compare different attributes. 
These columns grew to capture highly detailed information about each sample, for 
example, whether the sample was organic, if it was raw or cooked, if it was washed 
before sampling, or for cheese samples whether it is the rind or the curd, etc. As 
columns were added, the initial columns and the image repository were used to 
trace back information.

The above section describes the metadata for the food reference dataset, ideally 
one uses well-established controlled ontologies—if they allow one to answer the 
question the investigator cares about. For example, if one cares about the metabolic 
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changes in humans by latitude then the controlled metadata should have the 
latitude information. There are additional ontologies the user may want to use for 
answering different questions with RDD beyond the example provided here. In 
such cases, it is best to use an existing ontology, if available. There is an ontology 
lookup service at https://www.ebi.ac.uk/ols/index.

EMP26, BIOM32, REDU33, and REDBIOM34 are examples of systematic metadata 
capturing approaches that the authors have created previously. Proper metadata 
uses controlled vocabularies and is tedious and time consuming to collect in a 
systematic manner—usually taking more time than collecting the samples and data 
themselves—but is critical for the improved interpretation of the data.

Classification scheme. Various classifiers are used to describe foods, however we 
were unable to find an established scheme able to capture the diversity of samples, 
as well as distill the metadata down into a manageable number of categories to 
distinguish differences between the metabolomes of different food classes. We 
therefore categorized the foods by sample_type, which captured whether the 
sample was a food, beverage, or other item (for example, supplements) and then 
expanded and shaped a unique categorization, which takes into account the 
species and botanical definitions of foods. The sample_type categories range 
from sample_type_land_aquatic, to differentiate items sourced from different 
physical environments, sample_type_common, which allows for representation 
of a particular food group, which was not otherwise captured in the metadata, 
such as zoo food or candy. The sample_type groups also include a hierarchy from 
group1 to group6 (levels 1 through 5 are referenced in this manuscript), specific to 
foods and groupB1 through groupB3 which contain beverage specific information 
(alcoholic (binary), carbonated (binary), type of beverage (such as red wine, kefir, 
soda etc.)).

Complex samples. The above classification scheme gave sufficiently detailed 
information about simple foods (ones that have only one ingredient and could 
thus be filled out to the last group level, such as red cherry tomato). Complex 
foods contain not only multiple ingredients, but include highly processed foods 
with ingredient lists as well as home-cooked or restaurant meals. These foods 
have a higher variability of information known about them. When available, 
the top six ingredients are captured in individual metadata categories, with 
a seventh ingredient field, which contains the remainder of the ingredients. 
However, the order of ingredients does not always clearly reflect the type of 
food and some constituents that may be of interest, such as tree nuts, which 
may only be found in trace quantities. The sample_type_common category 
captured some of the information about the type of sample (candy); however, 
to have a tangible classification of different ingredient types, we generated 
a specific complex food ontology on the basis of the known presence of 
common categories (corn, dairy*, egg*, fruit, fungi, fish*, shellfish*, meat, 
peanut*, seaweed, soy*, tree nut*, vegetable/herb, and wheat*, where asterisks 
designate known food allergen)). These categories reflect the main food 
groups and some of the most common allergens (US FDA Food Allergen 
Labeling And Consumer Protection Act of 2004; https://www.fda.gov/food/
food-allergensgluten-free-guidance-documents-regulatory-information/
food-allergen-labeling-and-consumer-protection-act-2004-falcpa), items which 
are of interest when correlating food metabolome data with other datasets, such as 
human fecal material (where the foods eaten are known or unknown).

Fermented foods. Preservation and processing methods are included in the 
metadata. However, owing to the potential importance of fermentation in the 
alteration of the food metabolome, and the potential health benefits that have 
been ascribed to fermented foods, several categories were included to highlight 
this feature: fermented or not, whether it contains live active cultures, whether it 
contains chocolate (which was then cross checked with the fermented category, 
as chocolate is a fermented food). The list of fermented foods crosses many of our 
sample types as it includes fermented dairy (yogurt, cheese), fermented meat/fish 
(salami, fish sauce), fermented vegetables (kimchi, sauerkraut), fermented fruit 
(chocolate, coffee, apple), and fermented grains/legumes (bread, tempeh).

Food-specific categories. Certain individual food categories also necessitated 
creation of specific categorization. For example, cheeses have the specific categories 
cheese_part (curd versus rind), cheese_type (washed, blue etc), and cheese_texture 
(soft, semi-soft, semi-hard, and hard). Particularly for raw plant products, such 
as fruits, vegetables, grains which form the basis for many food ingredients, we 
captured botanical information: botanical_anatomy (fruit, leaf, tuber, seed etc.), 
botanical_genus, and botanical_genus_species (when known). Tea samples have 
tea quality and tea type as distinct categories.

Metadata for cross-study comparison. To facilitate cross study comparison, we 
included the Earth Microbiome Project ontology: empo_1 (level 1: free-living, 
host-associated, control, or unknown), empo_2 (level 2: saline, non-saline, animal, 
plant, or fungus), and empo_3 (level 3: most specific habitat name) (http://
earthmicrobiome.org/protocols-and-standards/empo/). Wherever possible, we 
linked foods to food identifiers or created identifiers and categories that built upon 
the existing framework as defined by the US Department of Agriculture’s Food and 

Nutrient Database for Dietary Studies 2011–2012 (FNDDS) food grouping scheme 
(https://www.ars.usda.gov/ARSUserFiles/80400530/pdf/fndds/fndds_2011_2012_
doc.pdf). There are additional ontologies the user may want to use for answering 
different questions with RDD beyond what is captured here. In such cases, it is best 
to use an existing ontology, if available. There is an ontology look-up service at 
https://www.ebi.ac.uk/ols/index.

Metabolite extraction. The samples were suspended in 95% ethanol and 
homogenized in a tissue-lyser at 25 Hz for 5 min. Homogenized samples (in 
ethanol) were incubated for 40 min at −20 °C and centrifuged (Eppendorf 
centrifuge 5418) at 20,000 r.p.m. for 15 min at 4 °C. 400 μl of supernatant were 
transferred to a 96-well deep-well plate and dried by centrifugal evaporation 
(Labconco Acid-Resistant Centrivap Concentrator). Dried extracts were 
reconstituted in 150 μl of resuspension solution (50% methanol with 2 μM 
sulfadimethoxine), then vortexed for 2 min and sonicated for 5 min in a water 
bath (Branson 5510). Resuspended extracts were then centrifuged for 15 min at 
20,000 r.p.m. and 4 °C (Thermo SORVALL LEGEND RT) and transferred to a 
96-well shallow-well plate, and diluted either 5× or 10× to avoid saturating the 
mass spectormetry detector.

Liquid chromatography–mass spectrometry. Food extracts were analyzed 
using an UltiMate 3000 ultra-high-performance liquid chromatography system 
(Thermo Scientific) equipped with a reverse phase C18 column, prepended with 
a guard cartridge (Kinetex, 100 × 2.1 mm, 1.7 μm particles size, 100 Å pore size; 
Phenomenex), at a column compartment temperature of 40 °C. Samples were 
chromatographically separated with a constant flow rate of 0.5 ml min−1 using 
the following gradient: 1.5 min isocratic at 5% B, up to 100% B in 8 min, 3 min 
isocratic at 100% B, back to 5% B in 0.5 min and then 1.5 min isocratic at 5% B (A: 
H2O + 0.1% formic acid; B: acetonitrile + 0.1% formic acid (LC–MS grade solvents, 
Fisher Chemical)).

The ultra-high-performance liquid chromatography system was coupled to a 
Maxis Q-TOF Impact II mass spectrometer (Bruker Daltonics) equipped with an 
electrospray ionization source. Mass spectra were acquired in positive ionization 
mode using data-dependent acquisition with a mass range of m/z 50–1,500. The 
instrument was externally calibrated two times per day to 1.0 p.p.m. mass accuracy 
using ESI-L Low Concentration Tuning Mix (Agilent Technologies). Hexakis (m/z 
622.029509; (1H,1H,2H difluoroethoxy)phosphazene; Synquest Laboratories) 
was used for lock mass correction. MS/MS spectra were acquired for the top five 
ions in each MS1 spectrum, with active exclusion after two spectra (maintained 
for 30 s). Known contaminants as well as lock mass values commonly used with 
this instrument were added to an exclusion list (m/z values listed): 144.49–145.49; 
621.00–624.10; 643.80–646.00; 659.78–662.00; 921.0–925.00; 943.80–946.00; 
959.80–962.00.

Raw high-resolution mass spectrometry data files were converted to open 
source .mzXML format using Bruker DataAnalysis software after lock mass 
correction (m/z 622.0290). Raw data files as well as converted .mzXML files were 
uploaded to MassIVE (publicly available under unique identifier MSV000084900) 
and further analyzed on GNPS (https://gnps.ucsd.edu), as described below.

FDR estimation. FDR estimation was calculated using Passatutto analysis 
workflow in GNPS21,35. FDR estimation was used to determine the cosine value 
required with a minimum of five matched peaks to achieve an FDR of 1%. See the 
Data Availability section for accession information.

Molecular networking using GNPS. In brief - molecular networking is accomplished 
by first merging all identical spectra of the study, structural reference libraries 
for annotations and food data using MS-Cluster36. Once merged, the merged 
spectra are aligned, taking in account the mass difference between the ions using 
a GNPS implementation of the modified cosine score. Throughout this process 
the metadata is tracked. Once the network has been created the resulting data 
table can then be used for downstream analysis. For the first report of the details 
of molecular networking see ref. 16, for the GNPS implementation of molecular 
networking see ref. 35, for a step-by-step instruction guide to molecular networking 
see ref. 37, for a review on use or interpretation of molecular networking see ref. 17.

Molecular networking analysis and library search were performed using GNPS 
classical molecular networking release_1835. 3579.mzXML data files (available at 
MassIVE ID MSV000084900) were included in the analysis. The data were filtered 
by removing all MS/MS peaks within +/− 17 m/z of the precursor m/z. MS/MS 
spectra were window filtered by choosing only the top 5 peaks in the +/− 50 m/z 
window throughout the spectrum. The data were then clustered with MS-Cluster 
with a parent mass tolerance of 0.02 m/z and an MS/MS fragment ion tolerance 
of 0.02 m/z to create consensus spectra. Further, consensus spectra that contained 
less than 2 spectra were discarded. A network was then created where edges were 
filtered to have a cosine score above 0.65 (slight variation per study based on 
FDR calculation) and more than 5 matched peaks. Further, edges between two 
nodes were kept in the network if and only if each of the nodes appeared in each 
other’s respective top 10 most similar nodes. The spectra in the network were then 
searched against the GNPS spectral libraries. The library spectra were filtered in 
the same manner as the input data. All matches kept between network spectra and 
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library spectra were required to have the same cosine score and minimum matched 
peaks as for library search. Version release 18 was used to process all studies 
with the exception of the COVID-19 dataset, which was processed with identical 
methods and version 23.

Molecular networking analysis utilizes a spectral library of 150,633 public 
reference spectra that are used by the GNPS analysis infrastructure for annotation 
of public data which presently includes 29 spectral libraries, including from the 
three MassBanks (Japan, EU and North America)38, HMDB39, ReSpect40, NIH 
natural product libraries41, PNNL lipid library42, Bruker/Sumner, FDA libraries, 
Gates Malaria library, EMBL library, as well as many other GNPS contributed 
libraries (https://gnps.ucsd.edu/ProteoSAFe/libraries.jsp)38 and the commercial 
NIST17 library (CID portion only). Molecular networks were visualized in the 
GNPS browser as well as with the freely available program Cytoscape (v.3.5.1)43.

Interpreted spectral rate calculation. The levels of interpretation are delineated 
as follows: a spectral match between an MS/MS spectrum from human or food 
data with a library spectrum constitutes a molecular ID and determines the initial 
percent of interpreted spectra, which is also equivalent to the annotation rate of the 
dataset. A spectral match between MS/MS spectra in human and reference samples 
(by performing molecular networking of the datasets together and identifying 
nodes with overlap between the two groups) indicates a potential source. Matches 
between human and food data therefore implicate food as the potential source of 
the molecule. Food reference data are referred to in two main categories: the Global 
FoodOmics dataset (GFOP; broad range of foods and beverages) and SSF (foods 
and/or beverages known to be consumed by some participants). The last level of 
interpretation is based on connectivity within a molecular family, which allows us 
to infer structural relatedness or possible metabolism of food derived compounds.

Food reference data and human data were organized into separate groups 
in the molecular networking analysis. The annotation and interpreted spectral 
rates were calculated using R (3.6.3) and the tidyr and dplyr packages. We first 
calculated percent annotation rate, or molecular ID, for all studies (stool, plasma 
etc.) (for example, number of stool nodes with a molecular ID/total number of 
stool nodes). Spectral matches between food reference data and human MS data 
(overlap between the two groups) provides the next level of information, referred 
to as the interpreted spectral rate (for example, number of nodes found in food and 
stool data/total number of stool nodes), indicating a potential food source.

For molecules without annotations to reference libraries, we wanted to measure 
the potential to explain their presence using molecular networking. By removing 
single loops in each dataset and comparing metabolites that shared a component 
index with an annotated compound, we were able to identify molecules that belong 
to the same molecular family to infer their potential classification, and calculate 
the interpreted spectral rate by dividing unannotated molecules that network with 
annotated ones by total metabolites within each sample type. Overlap between 
sample types was again assessed to understand contributions of co-networking 
of molecules across sample types, increasing our ability to explain unannotated 
molecules found in our datasets. Visualizations were generated using graphics 
and beeswarm packages, and significant differences were calculated using Welch’s 
t-tests (stats::t.test), Welch’s F-test (onewaytests::welch.test), and Games-Howell 
(rstatix::games_howell_test) for multiple comparisons, as appropriate, with 
multiple comparisons correction using Tukey’s method. All data are expressed as 
the mean ± standard error and considered significant if P < 0.05 unless otherwise 
stated.

For example, for GNPS molecular networking analyses test datasets were 
consistently placed in group 1 (G1) (and G2 for paired datasets, such as stool 
and plasma) and Global FoodOmics data were placed in group 4 (G4). SSFs were 
consistently placed in G3 when used. The common nodes between G1 and G4 
represent the overlap and potential enhancement of information, directly from 
the reference dataset. The improvement is thus measured by the difference in 
the overlap of G1 and G4 divided by the total nodes in G1 versus the number 
of annotations in G1 divided by the total nodes in G1. The ‘propagation’ refers 
to the counting of nodes within connected components in molecular families, 
which capture three types of additional information: 1) unnannotated compounds 
found only in G1 that network with an annotated compound found in G4 (could 
be an annotated molecule observed only in G4 or in G4 and G1); 2) unnannoted 
compounds found only in G1, but in the same molecular family with an 
unannotated food compound (G4); or 3) unnannotated compounds found only 
in G1, but in the same molecular family with an annotated food compound (G4). 
The increase shown for Total is taking into account the number of unique nodes 
from the three different types of molecular connectivity. The second is the largest 
contributor.

Metadata inference – proportional food count generation. Food counts were 
calculated as the number of consensus nodes in the molecular networking results 
that match to food samples. Consensus nodes were required to match to all of the 
relevant experiment groups (sample type, GFOP, optionally SSFs) and not match 
to any of the other experiment groups. All source file names corresponding to 
the filtered consensus nodes were matched to the GFOP file names and metadata 
to derive counts of the foods at different levels of the food hierarchy. Infrequent 
food types that occurred less often than water (presumed blank) were removed to 

filter out sporadic random matches. This was done for every analysis. For the flow 
diagram, the food counts for the complete datasets were calculated at different 
levels of the metadata hierarchy. Flow diagrams were generated in Python (v.3.8) 
using Pandas (v.0.25.3), NumPy (v.1.18.1), and floweaver (v.2.0.0a5)44–46.

RDD metabolomics-based food counts does come with caveats to consider. 
First, because it employs a database, the depth, breadth, and type of database must 
be taken into account when interpreting the output. Expanding the general food 
database with regional foods increased the number of matched spectra, whereas 
the participant diet diaries still contained foods not yet captured in the food 
database. Community contributions to expand the database, with high-quality 
associated metadata to achieve a more complete coverage, will ultimately eliminate 
this issue. Another consideration is that a molecule could be produced by humans 
but also be part of different diet sources (that is cholesterol produced by the 
human body versus consumed from meat) or that some molecules observed from 
animal sources such as vitamins (for example, pantothenate) or flavonoids are 
also observed in animals that consume them. However, the RDD method does 
not rely on a single MS/MS match, but aggregates tens to thousands of matches 
into signatures that point to a specific relative proportion of food categories. The 
overlap of such matches still contributes to the formulation of a hypothesis that 
the observed MS/MS features from human data might originate from the reference 
data as source.

Although we used all spectral matches in all figures except Fig. 2e,f where 
we used unique spectra only, care must be taken to not overinterpret the results, 
because some matches may get desired accuracy and precision only to level 1 of 
the ontology, but other matches may be precise and accurate all the way down to 
level 6. In other words, there are many more molecules that completely separate 
plants from animals (level 1) but are perhaps insufficient to readily separate out 
a red tomato from a yellow tomato (level 6). We show this directly in f. In f we 
explicitly use the unique MS/MS data only to get finer grained resolution. So 
instead of meat, we can now state (in proportions) who has more matches to pig 
meat or cow meat but that is only possible if there are unique spectra to that level. 
This is very similar to V4 amplification of 16S ribosomal RNA genes or related 
amplification methods in microbiome sequencing. In some cases, the data may 
allow for species identification, but most of the time only genus-level identification 
is possible. However, the V4 sequencing methodology is seeing extensive use to 
understand the microbiome. We also know that we are limited to the data of 3,600 
foods for the comparisons, but this is only the beginning of the development of 
these approaches. In the next decade, we expect many new algorithms, more data 
availability (most in the metabolomics community still do not share their data 
publicly), and methods will be needed—especially as the reference database will 
get into the hundreds of thousands or even millions, but will continue to leverage 
reference data using concepts defined in this paper.

Recovery of spectra from a spiked-in reference sample. Two human fecal 
biospecimens and the NIST 1950 plasma reference were each mixed with 
increasing proportions of tomato seedling (Solanum lycopersicum plant) and 
analyzed using ultra high-performance liquid chromatography. This data was from 
a previous publication20. In brief, the samples were dissolved in 7/3 methanol/
water and homogenized in a tissue lyser at 25 Hz for 5 min. The tubes were then 
centrifuged at 15,000 r.p.m. for 15 min and supernatant was collected. Extracts 
were then mixed in the following (biospecimen:seedling) ratios: 100:0, 75:25, 
50:50, 25:75, and 0:100. The number of MS/MS matches between each sample and 
neat tomato seedling (reference sample, 0:100) were calculated. The significance 
of the linear relationship between seedling proportion and number of seedling 
spectral matches was tested using repeated measures correlation. The proportions 
of spectral matches between each sample and the reference sample, as well as each 
sample and non-plant food reference groups (at level 1 of the food ontology) were 
also calculated.

Diet information from the NIST omnivore and vegan reference data. Human 
whole stool was obtained from volunteer donors by the BioCollective. The samples 
consisted of whole stool from vegan and omnivore donors (four donors per cohort) 
homogenized in deionized water and aliquoted into 1-ml vials. The samples were 
stored in aqueous and lyophilized conditions at −80 °C.

A feature table detailing the number of MS/MS matches between each fecal 
sample and each food contained in the reference database was generated. Food 
counts were modelled by principal component analysis (PCA) using the mixOmics 
package in R. Counts were aggregated for specific food categories (dairy, meat, 
seafood, legume, fleshy fruit, and vegetable/herb) known to be preferentially 
consumed in either diet. Differences in sum-normalized counts for each food 
category between omnivore and vegan samples were assessed by Wilcox test.

Diet variation in patients with Alzheimer’s disease. As described above, a feature 
table was generated on the basis of MS/MS matches between each serum sample 
and each reference food, then variation in diet readouts was assessed by PCA. 
Diet alpha-diversity was calculated using the Shannon index (R package vegan). 
Additionally, feature tables at different levels (L3, L4, and L5) of the food ontology 
were generated and counts were sum normalized. Correlations (Spearman) 
between each food category and PC1 were calculated (R package Hmisc) to 
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determine dietary patterns. Associations between dietary patterns (PC1) and 
study group, age, and gender were evaluated using a linear mixed-effects model 
(R package lme4) to control for the random effect of running samples on different 
plates. The Kenward–Roger approximate F-test, as implemented in pbkrtest, was 
used to assess the significance of each fixed effect in the model.

Dataset descriptions. All human datasets were processed by LC–MS/MS on 
high-resolution mass spectrometers, in positive ionization mode and contained 
between 5 and 2,123 samples, representing multiple different biofluids and tissues 
(Supplementary Table 1).

Data were collected for the following studies using a quadropole time-of-flight 
mass spectrometer and similar methods as those outlined above: american gut 
(MSV000081981), children with medical complexity (MSV000084610), Rotarix 
vaccine response (MSV000084218), Malawi legume supplement (MSV000081486), 
IBD_1 (MSV000082431), IBD_individual (MSV000079115), fermented food 
consumption (MSV000081171)47, the sleep restriction and circadian misalignment 
(MSV000083759; IRB 15-0282), centenarian (MSV000084591; IRB 180478), 
and legume supplementation (MSV000084663), the LP infant (MSV000083462; 
MSV000083463), IBD_seed (MSV000082221), IBD_biobank (MSV000079777), 
IBD_2 (MSV000084775), IBD_200 (MSV000084908) 30, IBD_biopsy 
(MSV000082220), gout (MSV000084908), adult saliva (MSV000083049).

The datasets for the impact of diet on rheumatoid arthritis (MSV000084556) 
and Alzheimer’s disease (MSV000085256) were collected with similar methods on 
a Q-exactive Orbitrap mass spectrometer (Thermo Scientific). The Alzheimer’s 
samples include Alzheimer’s disease and elderly controls, and were drawn in the 
early morning after fasting for at least 6 h.

The food and plasma data for the COVID-19 study (MSV000085505; 
MSV000085537) were collected at the University of São Paulo, Brazil. Plasma 
samples were collected from patients with laboratory-confirmed COVID-19 
who were admitted to the Special Unit for the Treatment of Infectious Diseases 
(UETDI) at the General Hospital of the Medical School of Ribeirão Preto 
(HC-FMRP-USP). Previously, clarifications to patients occurred both orally and 
in writing, on the basis of the printed text of the Free and Informed Consent 
Form, which contained the general proposal of the study, the procedures for 
obtaining the samples, the risks, and benefits. In addition, they were assured about 
confidentiality of their name, personal data, and the possibility of giving up their 
participation at any time. Following the signature, patients received a copy of the 
informed consent form. The following stipulations were included: 1) patients 
diagnosed with COVID-19 in moderate, severe or critical forms and in need of 
hospital treatment; 2) over 18 years old; 3) at least 50 kg body weight; 4) admission 
electrocardiogram without changes in rhythm and with QT interval <450 ms; 
5) normal serum levels of Ca2+ and K+; 6) if a woman, between 18 and 50 years 
old, negative β-HCG test on admission. Patients were excluded who: 1) have the 
mild forms of SARS-CoV-2; 2) were pregnant; 3) were unable to understand the 
information contained in the Free and Informed Consent Form.

Sample preparation: for the COVID-19 plasma samples, aliquots of 20 μl were 
transferred to Eppendorf tubes and 120 μl cold extracting solution, MeOH:MeCN 
(1:1, vol/vol) was added. After orbital shaking for 1 min (Gehaka AV-2 Shaker), the 
samples were left at −20 °C for 30 min and then centrifuged for 10 min at 20,000g 
at 4 °C (Centrifuge Boeco Germany M-240R). An aliquot of the organic phase 
(120 μl) was transferred to another Eppendorf tube and evaporated to dryness in a 
rotary vacuum concentrator for 60 min, at 30 °C (Analitica, Christ RVC2-18). The 
residues were resuspended in 80 μl H2O and centrifuged (10 min, 5,000g, 4 °C), an 
aliquot of 5 μl was injected.

For mass spectrometry data collection of plasma sample, extracts were 
chromatographically separated with an HPLC (Shimadzu), coupled with a 
micrOTOF-Q II mass spectrometer (Bruker Daltonics) equipped with an 
ESI source and a quadrupole-time of flight analyzer (Bruker Daltonics Inc.). 
For chromatographic analyses, we employed a Kinetex C18 column (1.7 µm, 
100 × 2.1 mm) (Phenomenex) kept at 40 °C, with a flow rate of 0.3 ml min−1. A linear 
gradient was applied: 0–1.5 min isocratic at 5% B, 1.5–9.5 min 100% B, 9.5–12 min 
isocratic at 100% B, 12–12.5 min 5% B, 12.5–14 min 5% B; where mobile phase A 
is water with 0.1% formic acid (vol/vol) and phase B is acetonitrile 0.1% formic 
acid (vol/vol) (LC–MS grade solvents). The MS data were acquired in positive 
mode using an MS range of m/z 50–1,500. The equipment was calibrated with 
trifluoroacetic acid every day, and internally during each run. The MS parameters 
were established as follows: end plate offset, 450 V; capillary voltage, 3,500 V; 
nebulizer gas pressure, 4.0 Bar; dry gas flow, 9 l min−1; dry temperature, 220 °C.

For data-dependent acquisition the five most abundant ions per MS1 scan 
were fragmented and the spectra collected. MS/MS active exclusion was set after 
2 spectra and released after 30 s. A fragmentation exclusion list was set to exclude 
known contaminants and infused lock mass compounds: m/z 144.49–145.49; 
621.00–624.10; 643.80–646.00; 659.78–662.00; 921.0–925.00; 943.80–946.00; and 
959.80–962.00. A process blank was run every 5 samples; 5 µl of a standard mix 
(paclitaxel 1 mg l−1, and diazepam 1 mg l−1) (Sigma-Aldrich) in 50% MeOH (LC–
MS grade solvents) was injected every five samples. All MS data were analyzed with 
Bruker Compass DataAnalysis 4.3 software (Bruker Daltonics).

A metadata file was created grouping all available clinical information from 
patients with laboratory confirmed COVID-19 and essential analysis specifications. 

The MS/MS data were calibrated with an internal standard (trifluoroacetic acid), 
converted to .mzXML files using MSConvert from the ProteoWizard software 
and then uploaded into the Global Natural Products Social Molecular Networking 
web-platform (https://gnps.ucsd.edu/). All MS data (.mzXML files) and metadata 
(.txt file) are publically available via GNPS/MassIVE (https://massive.ucsd.edu/) 
under accession number MSV000085373.

Resources to get started on your own dataset. There is a recorded introduction 
workshop that was given as part of the Shaping the Microbiome Through 
Nutrition UCSD-Nature Publishing conference. https://ccms-ucsd.github.io/
GNPSDocumentation/workshops/. For a step-by-step guide and video see https://
ccms-ucsd.github.io/GNPSDocumentation/tutorials/rdd/ and corresponding video 
tutorial https://www.youtube.com/watch?v=2-XsifrUY0Y.

Reporting summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
The following files are available in addition to the Global FoodOmics mzXML 
files on https://massive.ucsd.edu under MSV000084900: metadata as a.txt; an 
image repository with between one and six images per food item that was sampled; 
table of FDR-based parameters; full size PDF of sleep restriction and circadian 
misalignment study; food reference data molecular network (excerpts found in 
Fig. 1). A metadata dictionary can also be accessed here: https://docs.google.com/
spreadsheets/d/1Ebn-TgMWEkd_7KOw9TCRvHGPsE7dGjVCr7dg28pwbmM/
edit#gid=727944641. The accessions numbers to the raw metabolomics data files 
available via Supplementary Table 2. The GNPS-based molecular networking 
analyses jobs used in this study can be accessed online at the following links: sleep 
and circadian study (MSV000083759, https://gnps.ucsd.edu/ProteoSAFe/status.jsp
?task=e0bf255bcb2e492bb0be3be1a691b5fb, https://gnps.ucsd.edu/ProteoSAFe/
status.jsp?task=6fe434761daf4f9da540cf1fd90b3985, https://gnps.ucsd.edu/
ProteoSAFe/status.jsp?task=9a90bd12f51e453e968656e6458e0da4); centenarian 
(MSV000084591, https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=8895b6e3
445546c4a5bc3a726a920227, https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task
=981c9a7d39f742bda296d52f856981e5); impact of diet on rheumatoid arthritis 
(MSV000084556, https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=0794151fce
2c4c18a7a0aa3a09140169); LP infant (MSV000083462, MSV000083463, https://
gnps.ucsd.edu/ProteoSAFe/status.jsp?task=a7b222466ef844e69cdbd9835d2f6c39, 
https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=c756a9dfb5c34a2a8655f8811
4edf0a8, https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=4a322e640bb64406
8030949267fb4ea9); children with medical complexity (MSV000084610, https://
gnps.ucsd.edu/ProteoSAFe/status.jsp?task=df24423835a341969342c2086b462
75a); american gut (MSV000081981, https://gnps.ucsd.edu/ProteoSAFe/status.
jsp?task=4884483bcffe4f269819858c3fd4faef); fermented food consumption 
(MSV000081171, https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=5cca39e
0ebab4066a56e41ded48b4466); Malawi legume supplement (MSV000081486, 
https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=93ba727aa9234727a73ae
7860b2af3ca); Rotarix vaccine response (MSV000084218, https://gnps.ucsd.
edu/ProteoSAFe/status.jsp?task=08e9b9e048f04ac4b416e574a073e8e6); IBD_1 
(MSV000082431; https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=ec08eed8f1
86430d893c63111409baf4); IBD_individual (MSV000079115, https://gnps.ucsd.
edu/ProteoSAFe/status.jsp?task=fad746939afd4184975a296436aebfb7); IBD_seed 
(MSV000082221, https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=907f2e0b7
878417dbdb4c83f0df0e83a); IBD_biobank (MSV000079777, https://gnps.ucsd.
edu/ProteoSAFe/status.jsp?task=a79fbd4c96124209adfd0ef84cb56dec); IBD_2 
(MSV000084775, https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=07f855658
c5342458045032ea70fc526); IBD_200 (MSV000084908, https://gnps.ucsd.edu/
ProteoSAFe/status.jsp?task=55bef02250d744eb97c6040c379cbfb4); Alzheimer’s 
disease (MSV000085256, https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=aac
78e9d23b84194ab2f768cb685c636); Alzheimer’s disease serum (MSV000086270, 
https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=570aacf2244948c7afa5906
31de5d345); omnivore versus vegan (MSV000086989, https://gnps.ucsd.edu/
ProteoSAFe/status.jsp?task=74089e95b8df41b2af7c289869dc866f); COVID-19 
(MSV000085505, MSV000085537, https://gnps.ucsd.edu/ProteoSAFe/status.jsp?ta
sk=9cbcb6b46fe24826bc56c9e893d0bd2b); IBD_biopsy (MSV000082220, https://
gnps.ucsd.edu/ProteoSAFe/status.jsp?task=a83a279dad154f9ca7b549d40ce117ba); 
gout (MSV000084908, https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=55bef0
2250d744eb97c6040c379cbfb4); adult saliva (MSV000083049, https://gnps.ucsd.
edu/ProteoSAFe/status.jsp?task=6dd6e5b1cf454d67b8a2b3c151c18f4a); legume 
supplementation (MSV000084663, https://gnps.ucsd.edu/ProteoSAFe/status.jsp
?task=93ba727aa9234727a73ae7860b2af3ca); tomato seedling (MSV000083353, 
https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=3b6020d7034045c399696318
94ae4c22); food only (MSV000084900, https://gnps.ucsd.edu/ProteoSAFe/status.
jsp?task=d5adba7f67cc402396e9ba7cd85ce52b). Networking parameters were set 
on the basis of the MOLECULAR-LIBRARYSEARCH-FDR workflow on GNPS 
with the following task IDs: GFOP3500, a7bf6cc3f91d466bab923f2268d6f4fc; 
sleep deprivation, b55ab4004ed342d7b4ed1c488e935998; sleep 
study, 78bbfed8574748d1a77dc7c2f1a44d39; sleep study_
SSF_test, b55ab4004ed342d7b4ed1c488e935998; centenarian, 
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265a9553c69e47499cca3de056b43178; centenarian_SSF_
test, 265a9553c69e47499cca3de056b43178; American gut, 
aee5dde3b2f84079a264e68ec981487e; fermented food consumption, 
a44d1b2e1b9d4612974d0b85021675a7; Malawi legume supplement, 
de7b55f8adaa4ad9b2a8430e30435bf3; children with medical 
complexity, f27243af071b43ab90d846bda959fc1c; Rotarix vaccine 
response, a2e02e3f97a54ca08e3866cc60f8d42b; impact of diet on 
rheumatoid arthritis, 62b8754e761549f3b94ffae83d7ab95a; LP infant, 
532aba2ad3644fadba0e6e7ea063c7ee; IBD_1, bb10b1ce90a24f3a9cef1e85e88c3882; 
IBD_biopsy, c4cfda90933b4842a7154f5f2def139d; IBD_
individual, 3ce8cc636ae944848b4ada322aaf12fe; IBD_seed, 
ebbb715fc605457ba5f7e910b79d6177; IBD_biobank, 9465c34cf5444
e12b89318b1fb363714; IBD_2, 983fa9271136404fb5743b44a6a109f0; 
IBD_200, e5acf5726722486caa897b2b07d402e8; Alzheimer’s disease, 
658103164325425981c097cecba840b0; Alzheimer’s disease serum, 
67516099b37647f2a9c91f890366bef3; omnivore versus vegan, 
ba974d08cab04f77aaacdb7828baada6; gout, a478f419ae824378aa02e5e1b310cad2; 
adult saliva, 32980f95dbd5437aaa9e15d05c7246bb; LP 
infant, 8bfbdc1bf38c418fb223306cd42af897; LP infant, 
3e414e13a4394bb78c07f7ca7f4d1be3; legume supplementation, 
2ca007303b9c4bb3820f392b996eba27; COVID-19 Brazil, 
d16eb32276c84bdb9c35c5872e97a986; Tomato seedling, 
f1c9cd79e0e94c66a367b6816b149750.

Code availability
The code generated during this study is available at https://github.com/
DorresteinLaboratory/GlobalFoodomics.
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